Calculatis divertimenti

… Et pour en finir avec le choix de l’octave

Ensemble chromatique tempéré (rappel)

 

C4. 2 ^ (0/1200) * 261,62 = 261.62 → fréquence de départ

                                                                                              Indices

                                                                                                   ↓

C#4.     2 ^ (100/1200) * 261,62 = 277.176734746  | 1.05946309436

D4.      2 ^ (200/1200) * 261,62 = 293.658521079   | 1.12246204831 | log(100) ^ (200/1200) * 261.62 = idem

D#42 ^ (300/1200) * 261,62 = 311.120365427     | 1.189207115     | log(100) ^ (300/1200) * 261,62 = idem

E4.      2 ^ (400/1200) * 261,62 = 329.620545073    | 1.25992104989| log(100) ^ (400/1200) * 261,62 = idem

F4.      2 ^ (500/1200) * 261,62 = 349.220802648    | 1.33483985417 | log(100) ^ (500/1200) * 261,62 = idem

F#4.    2 ^ (600/1200) * 261,62 = 369.986552188    | 1.41421356237 | log(100) ^ (600/1200) * 261.62 = idem

G4.    2 ^ (700/1200) * 261,62 = 391.987097452     | 1.49830707688 | log(100) ^ (700/1200) * 261,62 = idem

G#42 ^ (800/1200) * 261,62 = 415.295863216     | 1.58740105197 | log(100) ^ (800/1200) * 261,62 = idem

A5.    2 ^ (900/1200) * 261,62 = 439.990640317     | 1.68179283051 | log(100) ^ (900/1200) * 261,62 = idem

Bb5.  2 ^ (1000/1200) * 261,62 = 466.15384528     | 1.78179743628 | log(100) ^ (1000/1200) * 261,62 = idem

B.      2 ^ (1100/1200) * 261,62 = 493.872795368   | 1.88774862536 | log(100) ^ (1100/1200) * 261,62 = idem

C8ve 2 ^ (1200/1200) * 261,62 = 523.24                  |             2            | log(100) ^ (1200/1200) * 261,62 = idem


Les 7 modalités du log(261.62)

Modalité de C / log(261.62)Indice 2.41767094133

(log(261.62) ^ (((1200/1200) * 1200) / 1200)) * 261.62 = 632.511071669

ou

2.41767094133 ^ (((1200/1200) * 1200) / 1200)) * 261.62 = idem [1528 ∆], soit une 8ve + 328 cents (∆)

(2,41767094133 ^ (((1200/12) * 1)/1200)) * 261,62 = 281.592256001 |constante k 127 ∆]

——————-

Modalité de D / log(293.658521079) → Indice 2.46784260727

(log(293.658521079) ^ (((1200/1200) * 1200) / 1200)) * 261.62 = 645.636982914

ou

2.46784260727 ^ (((1200/1200) * 1200) / 1200)) * 261.62 = idem [1564 ∆], soit une 8ve + 364 ∆

2.46784260727 ^ (((1200/12) * 1) / 1200)) * 261.62 = 282.074653176 |constante k 130 ]

——————-

Modalité de E / log(329.620545073) → Indice 2.51801427321

(log(329.620545073) ^ (((1200/1200) * 1200) / 1200)) * 261.62 = 658.762894158

ou

2.51801427321 ^ (((1200/1200) * 1200) / 1200)) * 261.62 = idem [1599 ∆], soit une 8ve +399 ∆

2.51801427321 ^ (((1200/12) * 1) / 1200)) * 261.62 = 282.548142765 |constante k 133 ]

——————-

Modalité de F / log(349.220802648) Indice 2.54310010619

(log(349.220802648) ^ (((1200/1200) * 1200) / 1200)) * 261.62 = 665.32584978

ou

2.54310010619 ^ (((1200/1200) * 1200) / 1200)) * 261.62 = idem [1616 ∆], soit une 8ve + 416 ∆

2.54310010619 ^ (((1200/12) * 1) / 1200)) * 261.62 = 282.78165333 |constante k 135 ]

——————-

Modalité de G / log(391.987097452) Indice 2.59327177213

 

(log(391.987097452) ^ (((1200/1200) * 1200) / 1200)) * 261.62 = 678.451761024

ou

2.59327177213 ^ (((1200/1200) * 1200) / 1200)) * 261.62 = idem [1650 ∆], soit une 8ve + 450 ∆

2.54310010619 ^ (((1200/12) * 1) / 1200)) * 261.62 = 282.78165333 |constante k 137.5 ]

——————-

Modalité de A / log(439.990640317) Indice 2.64344343807

log(439.990640317) ^ (((1200/1200) * 1200) / 1200)) * 261.62 = 691.577672269

ou

2.64344343807 ^ (((1200/1200) * 1200) / 1200)) * 261.62 = idem [1683 ∆], soit une 8ve +483 ∆

2.64344343807 ^ (((1200/12) * 1) / 1200)) * 261.62 = 283.695061989 |constante k 140.25 ]

——————-

Modalité de B / log(493.872795368) Indice 2.69361510402

log(493.872795368) ^ (((1200/1200) * 1200) / 1200)) * 261.62 = 704.703583513

ou

2.69361510402 ^ (((1200/1200) * 1200) / 1200)) * 261.62 = idem [1715 ∆], soit une 8ve +515 ∆

2.69361510402 ^ (((1200/12) * 1) / 1200)) * 261.62 = 284.13990846 |constante k 143 ]


Déconstruction de la 8ve tempéré (1200 ∆)

(un exemple)

log(1200) = 3.07918124605

3.07918124605 ^ (((1200/1200) * 1200) / 1200)) * 261.62 = 805.575397592 Hz |1947]

3.07918124605 ^ (((1947/1947) * 1200) / 1200)) * 261.62 = 805.575397592 Hz |1947]

3.07918124605 ^ (((1947/1947) * 1947) / 1200)) * 261.62 = 1622.39701763 [3159 ∆]

1622.39701763 / 2 = 811.198508815 |1947 + 36.78 ∆]

811.198508815 – 805.575397592 = 5.623111223 Hz |1947 + 36.78 ∆]


Un exemple de partage infra-tonique

1200 / 5 = 240 ∆ | 2 ^ ((240 * 5) / 1200) * 261.6 = 523.2

log(240) = 2.38021124171 (indice)log(1200/5) = 2.38021124171 (indice)

log(1200/5) ^ (1200/1200) = 2.38021124171 (indice)

2.38021124171 ^ (1200 / 1200) * 261.62 = 622.710865056 Hz

2.38021124171 ^ ((240 * 5) / 1200) * 261.62 = idem [1501 ∆], soit une 8ve + 301

Outils complémentaires en dehors de la calculatrice Google

Sengpielaudio 

 Hyperphysics

Musescore


8ve logarithmique

8ve logarithmique naturelle ou tout simplement une X(ave)

C4 → D#5 + 28 cents

(log(261.62) ^ (((1200/1200) * 1200) / 1200)) * 261.62 = 632.511071669 [D#5 + 28 cents]

632.511071669 / 261.62 = 2.41767094132 Ratio

2.41767094132 ^ (((1200/1200) * 1200) / 1200)) * 261.62 = 632.511071668

1528 cents

soit 1528/12 = 127.333333333

donc : une constante (k) arrondi à 127 cents

dans un parcours juxtaposé de 8ve ⇔ X(ave) {1200⇔1528}

2.41767094132 ^ (((127.333333333 * 0 / 1528) * 1200) / 1200)) * 261.62 = 261.62 Hz [C4 + 0 cents]

2.41767094132 ^ (((127.333333333 * 1 / 1528) * 1200) / 1200)) * 261.62 = 281.592256001 Hz [C#4 + 27 cents]

2.41767094132 ^ (((127.333333333 * 2 / 1528) * 1200) / 1200)) * 261.62 = 303.089208164 Hz [D4 + 55 cents]

2.41767094132 ^ (((127.333333333 * 3 / 1528) * 1200) / 1200)) * 261.62 = 326.227252873 Hz [D#4 + 82 cents]

2.41767094132 ^ (((127.333333333 * 4 / 1528) * 1200) / 1200)) * 261.62 = 351.131672294 Hz [F4 + 9 cents]

2.41767094132 ^ (((127.333333333 * 5 / 1528) * 1200) / 1200)) * 261.62 = 377.937312723 Hz [F#4 + 37 cents]

2.41767094132 ^ (((127.333333333 * 6 / 1528) * 1200) / 1200)) * 261.62 = 406.789314719 Hz [G4 + 64 cents]

2.41767094132 ^ (((127.333333333 * 7 / 1528) * 1200) / 1200)) * 261.62 = 437.843898971 Hz [G#4 + 91 cents]

2.41767094132 ^ (((127.333333333 * 8 / 1528) * 1200) / 1200)) * 261.62 = 471.269212169 Hz [A#4 + 19 cents]

2.41767094132 ^ (((127.333333333 * 9 / 1528) * 1200) / 1200)) * 261.62 = 507.246237438 Hz [B4 + 46 cents]

2.41767094132 ^ (((127.333333333 * 10 / 1528) * 1200) / 1200)) * 261.62 = 545.969774285 Hz [C5 + 74 cents]

2.41767094132 ^ (((127.333333333 * 11 / 1528) * 1200) / 1200)) * 261.62 = 587.649493347 Hz [D5 + 1 cents]

2.41767094132 ^ (((127.333333333 * 12 / 1528) * 1200) / 1200)) * 261.62 = 632.511071667 Hz [D#5 + 28 cents]

Une prolifération dérivée

2.41767094132 ^ (((127.333333333 * 1/ 1528) * 1528) / 1200)) * 261.62

constante (k) 62 cents |échelle non répétitive

Additif

sengpielaudio 

Voir : Une sonoïèse fréquentielle

Et pour en finir avec le choix de l’octave

Formulations ludiques à la portée de tous

(entraînement)

à l’usage fréquentiel créatif

2 ^ (1 / 1) =

1200 / 1 =

(1 ^ (((1200/1200) * 1200) / 1200)) * 261.62 =

log(100) =

log(100)^(((1200/1200) * 1200) / 1200)) =

log(2) =

Bien entendu, le sens des résultats aura toujours besoin d’un investissement sémantique :

signification de ce qui est souhaité.


À vous de calculer

(0 ^ (((1200/1200) * 1200) / 1200)) * 261.62

Notre signification (ex.)


Outils complémentaires en dehors de Google

Sengpielaudio 

 Hyperphysics

Musescore

Additif


Opérations avec la base 2 mod 12

B(e) ^ (((Ep ÷ mod) × d) ÷ Ea)) × f ° = ms

(2^(((1400 / 12) * 1) / 1200)) * 261.62 = 279,858013 (transposition + 17 cents)

Variante : Log( 279,858013) = 2.4469377463 [K 129]

(2^(((1400 / 12) * 12) / 1200)) * 261.62 = 587,317042

Variante : Log (587,317042) = 2.76887260282 [K 147]


 

(2^(((1300 / 12) * 1) / 1200)) * 261.62 = 278,514147 (transposition + 8 cents)

Variante : Log (278,514147) = 2.44484725986

(2^(((1300 / 12) * 12) / 1200)) * 261.62 = 554.353469493 (transposition + 8 cents)

Variante : Log(554.353469493) = 2.74378676996


(2^(((1200 / 12) * 12) / 1200)) * 261.62 = 523.24

(2^(((1100 / 12) * 13.091) / 1200)) * 261.62 = 523.242518633

(2^(((1000 / 12) * 14.4) /1200)) * 261.62 = 523.24

(2^(((900 / 12) * 16) / 1200)) * 261.62 = 523.24

(2^(((800 / 12) * 18) / 1200)) * 261,62 = 523.24

(2^(((700 / 12) * 20.6) / 1200)) * 261.62 = 523.743968007

(2^(((600 / 12) * 24) / 1200)) * 261.62 = 523.24

(2^(((500 / 12) * 28.8) / 1200)) * 261.62 = 523.24

(2^(((400 / 12) * 36) / 1200)) * 261,62 = 523.24

(2^(((300 / 12) * 48) / 1200)) * 261.62 = 523.24


D’après Ivan Wyschnegradsky

(2^(((200 / 12)*72) / 1200)) * 261.62 = 523.24

(200 / 12)*72) =1200 | (200 / 12)* 1) = 16.6666666667

(2^(((200 / 12)*72) / 1200)) (2^(((200 / 12)*72) / 1200)) = 2

(2^(((100 / 12) *144) / 1200)) * 261.62 = 523.24 | (100 / 12) *144) = 1200 | (100 / 12) *1) = 8.33333333333


(2^((((200 ÷ 2) / 12) * 144) / 1200)) * 261,62 = 523.24

Tiers de ton (2^((((200 ÷ 3) * 18) / 1200)) * 261,62 = idem

Quarts de ton (2^((((200 ÷ 4) * 24) / 1200)) * 261,62 = idem

Cinquièmes de ton (2^((((200 ÷ 5) * 30) / 1200)) * 261,62 = idem

Sixièmes de ton (2^((((200 ÷ 6) * 36) / 1200)) * 261,62 = idem

Septièmes de ton (2^((((200 ÷ 7) * 42 / 1200)) * 261,62 = idem

Huitièmes de ton (2^((((200 ÷ 8) * 48 / 1200)) * 261,62 = idem

Neuvièmes de ton (2^((((200 ÷ 9) * 54 / 1200)) * 261,62 = idem

Dixièmes de ton (2^((((200 ÷ 10) * 60/ 1200)) * 261,62 = idem

Onzièmes de ton (2^((((200 ÷ 11) * 66 / 1200)) * 261,62 = idem

Deuxièmes de ton (2^((((200 ÷ 12) * 72 / 1200)) * 261,62 = idem


Logarithmes de cents

Log(1200) = 3.07918124605 (une 8ve + 747 cents)

log(200) = 2.30102999566 (une 8ve + 243 cents)

Une formule pour le calcul sonopoïétique

sonopoïèse 

Quelques exemples dans l’emploi de la formule du postulat :

B(e) ^ (((Ep ÷ mod) × d) ÷ Ea)) × f° = ms (en base 2)


segment (Ep ÷ mod]

(1/1200) ∼ 1 centième de ton (cent) [1200 termes] C4 + 1 cent


(50/1200) 1/4 de ton [24 sons] C4 + 50 cents


Autres numérateurs : 16,16 (1/12e) d.t [72 sons] – 18,18 (1/11e) d.t [66 sons] – 20 (1/10e) d.t [60 sons]

22,22 (1/9) d.t [54 sons] – 25 (1/8e) d.t [48 sons] – 28,57 (1/7e) d.t [42 sons] – 33,33 (1/6e) d.t [36 sons]

40 (1/5e) d.t [30 sons] – 66,66 1/3e d.t [18 sons] – (100 1/2 ton).


segment (Ep ÷ mod] ∼ (1300/1200)

(2^(((1300/1200)*1200)/1200))*261,62 D5 8ve


segment (Ep ÷ mod] ∼ (1250/1200)

(2^(((1250/1200)*1200)/1200))*261,62 C5 + 50 cents


L’octave et le tyran ut →

Octave proliférante et (X)aves →

Ratio f2 / f1

523,24 / 261,62 = 2(8ve)

(2^(((1200 / 1200) * 1200) / 1200)) * 261,62

———————————————–

Logarithmes &  opérations élémentaires →

log(523.24 + 261.62) = 2.89479219604  soit  261.62 * (2.89479219604 ^1) = 757.335534328 Hz [F#5 + 40 cents ∆]

log(523.24 – 261.62) = 2.41767094133  soit 261.62 * (2.41767094133 ^ 1) = 632.511071671 Hz [C#5 + 28 cents∆]

[ Réduction sonopoïétique log(261.62) * 261.62 = 632.511071669 (vérification) ]

log(523.24 * 261.62) = 5.13637187831 soit  261.62 * (5.13637187831 ^ 1) = 1343.7776108 Hz [E6 + 33 cents ∆]

log(523.24 / 261.62) = 0.30102999566 soit  261.62 * (0.30102999566 ^ 1) = 78.7554674646 (constante K cents ou fréquentielle)


X(aves) →

X(ave) d’origine (2^(((1250 / 1200) * 1200) / 1200)) * 261,62 = 538.572102301

(dépassement de l’octave)

538.5721022301 / 261.62 = 2.05860447301 C4 + 50 ∆

Logarithmes

Log(538.5721022301+ 261.62) = 2.90319426065 [F#5+45∆soit  261.62 * (2.90319426065 ^ 1) = 759.533682471 [F#5+45∆]

Log(538.5721022301 – 261.62) = 2.44240466605 [C#5 + 50∆soit 261.62 * (2.44240466605 ^ 1) = 638.981908732 [D#5 + 46∆]

Log(538.5721022301 * 261.62) = 5.14891479474 [E6 + 37∆soit  261.62 * (5.14891479474 ^ 1) = 1347.0590886

Log(538.5721022301 / 261.62) = 0.31357291209  soit  261.62 * (0.31357291209^1) = 82.036945261 (constante K cents ou fréquentielle)


X(aves) logarithmiques dérivées à partir des intervalles du modulo 12

Log(100) = 2

Log(100) ^ (((1200 / 12) * 12) / 1200)) * 261.62 = 523.24 8ve

soit : 2 ^ (((1200 / 12) * 12) / 1200)) * 261.62 = 8ve


Log(200) = 2.30102999566
(log200 ^ (((1200 / 12) * 12) / 1200)) * 261.62 = 601.99546746

 [1443 cents ou (1) 8ve + 243 cents] Réalité sonore

Log(300) = 2.47712125472
(log(300) ^ (((1200 / 12) * 12) / 1200)) * 261.62 = 648.06446266 Hz

[1570 cents ou (1) 8ve + 370 cents]

Log(400) = 2.60205999133
(log(400) ^ (((1200 / 12) * 12) / 1200)) * 261.62 = 680.750934931 Hz

[1656 cents ou (1) 8ve + 456 cents]

Log(500) = 2.69897000434
(log(500) ^ (((1200 / 12) * 12) / 1200)) * 261.62 = 706.104532534 Hz

[1719 cents ou (1) 8ve + 519 cents

Log(600) = 2.77815125038
(log(600)^(((1200 / 12) * 12) / 1200)) * 261.62 = 726.819930125 Hz

[1769 cents ou (1) 8ve + 519 cents]

Log(700) = 2.84509804001
(log(700) ^ (((1200 / 12) * 12) / 1200)) * 261.62 = 744.334549229 Hz

[1810 cents ou (1) 8ve + 610 cents]

Log(800) = 2.90308998699
(log(800) ^ (((1200 / 12) * 12) / 1200)) * 261.62 =

759.506402397 Hz [1845 cents ou (1) 8ve + 645 cents]

Log(900) = 2.95424250944
(log(900) ^ (((1200 / 12) * 12) / 1200)) * 261.62 = 772.88892532 Hz

[1875 cents ou (1) 8ve + 675 cents]

Log(1000) = 3
(log(1000) ^ (((1200 / 12) * 12) / 1200)) * 261.62 =784.86 Hz

[1902 cents ou (1) 8ve + 702 cents]

Log(1100) = 3.04139268516
(log(1100)^(((1200 / 12) * 12) / 1200)) * 261.62 = 795.689154291

[1926 cents ou (1) 8ve + 726 cents]

Log(1200) = 3.07918124605
(log(1200)^(((1200 / 12) * 12) / 1200)) * 261.62 = 805.575397591

[1947 cents 1) 8ve + 1947 cents]

 


Épilogue

261.62 * (2 ^ 1) = 523.24

log(523.24 / 261.62) = 0.30102999566

0.30102999566 * 1000 = 301.02999566

Log(2) = 0,30102999566     références

 


Calculette sonoïètique

Tradition / continuité / dépassement

B(e) ^ (((Ep ÷ mod) × d) ÷ Ea)) × = ms

Base initiale concaténée à la [l’espace de parcours divisé par le modulo], multiplié par un déplacement] : le tout divisé par le modulaire auxiliaire d’itération et clôturée par la multiplication d’une fréquence.

Opérations élémentaires avec l’8ve

(4^(((1200 / 12) * 12) /1200)) * 261,62 = 1046.48 Hz ( 8^, 16^, 32^, 64^, etc.)

(2^(((1200 / 12) * 12) / 1200)) * 261,62 = 523.24 Hz

(2^(((1200 * 12) * 0) / 1200)) * 261.62 / 2 = 130.81 Hz (÷4, ÷8, ÷16, etc…)

Opérations avec la variable (d) déplacement 

(2^(((1200 / 12) * (1) / 1200)) * 261,62 = 277.176734746 [C#4]

(2^(((1200 / 12) * (-1)) / 1200)) * 261,62 = 246.936397684 [B3]

Additif

Etc…

Continuité

Quelques partages infra-chromatiques dans l’8ve

∆ : cent(s)

Modulo 72 échelle douzièmes de ton 261.62 * (2^(((1200 / 72) * 1) / 1200)) = 264.150789763 [C41/12 + 17 ()]

Modulo 66 échelle onzièmes de ton 261.62 * (2^(((1200 / 66) * 1) / 1200)) = 264.382071985 [C41/11 + 18 ()]

Modulo 54 échelle neuvièmes de ton 261.62 * (2^(((1200 / 54) * 1) / 1200)) = 264.999815076 [C41/9 + 22 (∆)]

Modulo 42 échelle septièmes de ton 261.62 * (2^(((1200 / 42) * 1) / 1200)) = 265.973471754 [C41/7 + 29 ()]

Modulo 30 échelle cinquièmes de ton 261.62 * (2^(((1200 / 30) * 1) / 1200)) = 267.735077624 [C41/5 + 40 ()]

Modulo 24 échelle quarts de ton 261.62 * (2^(((1200 / 24) * 1) / 1200)) = 269.286051151 [C41/4 + 50 ()]

Modulo 22 échelle Shrutis 261.62 * (2^(((1200 / 22) * 1) / 1200)) = 269.994006144 [C41/4+4 + 54 ()]

Modulo 18 échelle tiers de ton 261.62 * (2^(((1200 / 18) * 1) / 1200)) = 271.890998714 [C41/3 + 67 ()]

Échelle chromatique 261.62 * (2^(((1200 / 12) * 1) / 1200)) = C41/2

Dépassement : notre vision

FIN


Noyau préliminaire


Passe-temps

Théorie musicale I

Autres I & II

Sources fondamentales I & II

Aide →

Concaténation opératoire

Prolifération des espaces par la constante K 139

1300/1200 = 1,08333333333333 (indice)

261.62*(1.08333333333 ^ 1) (K) 139 cents

1300/1200 = 1.08333333333 | 261.62 * (1.08333333333 ^ 1) = 283.421666666 [C#4 + 39]

261.62 * (1.08333333333 ^ 13) = 740.590816985 [F#5 + 1]

740.590816985 / 261.62 = 2.83078823096 (indice)

Vérification

261.62 * (1.08333333333 ^ 13) = 740.590

Récursivité

261.62*(1.08333333333 ^ 13)/261.62 = 2.83078823096 (indice)


Dilatation

261.62 * ( 2.03900479616 ^ 2) = 1087.69576098 Hz [C4 0][C6 + 67 cents]

vérification

1087.69576098 / 261.62 = 4.15754055875 (indice)

261.62 * ( 4.15754055875^1) = 1087.69576098

Une sonoïèse fréquentielle

©Sonocreatica 2017-2021

lorsqu’un espace se partage en deux, naît un univers et celui-ci définit une unité. La description, l’invention et le maniement d’unités sont à la base de toute recherche scientifique. Maturana/Varela

Étant donné le caractère intuitif (historiquement approuvé) des notions d’intervalle et (d’)octave en musique, nous associerons la catégorie de dérive phylogénique à une fréquence (n).
Ainsi, dans notre préoccupation heuristique/constructive le besoin d’une cohésion ou mieux encore d’une hybridation logarithme/hertz/cents/modulo, effleure comme la condition sine qua non d’une formulation avec des implications sonoïétiques.


Surgit donc la séquence formelle de caractère sonopoïétique ―enactée par les différentes proliférations singulières des diverses catégories opérées.

Sonoïèse

POSTULAT
Soit une base initiale de transformations inattendues concaténée à la division d’un espace de parcours par son modulo et 
multiplié par le déplacement factoriel d’une fréquence frontière. Tout ceci vérifié par l’itération d’une division modulaire auxiliaire et clôturée par la multiplication d’une fréquence substrat ou référentielle : dévoila enfin la magnitude opérée ou substrat attendu.


B(e) ^ (((Ep ÷ mod) × d) ÷ Ea)) × = ms (ex.)

B(e) : base d’une fréquence ou “composant référentiel”/ (voir)
Ep : espace de parcours/
mod : modulo/
d : déplacement/
Ea : espace auxiliaire/
: fréquence substrat/
ms : magnitude substrat ou frontière flottante

à propos de la formule


8ve – X(aves) – Constantes (K)

(2^(((1200/12)*12)/1200))*261,62) = 523.24 Hz / 8ve

(2^(((1300/12)*12)/1200))*261,62 = 554.353469493 Hz (mod modifiée / (périodicité non octaviante)

Audio

(2^(((1200/12)*12)/1300))*261,62 = 496.072078603 Hz (mod modifiée / 8ve dilatée)

K/ B(e) =  1 ton + 8 cents

(2^(((1200/12)*13)/1300))*261,62 = 523.24 Hz

clôture opérationnelle


 

(2^(((50*1/12)*12)/1200))*261.62 = 269.286051151 Hz (1/4) de ton

(2^(((50*24/12)*12)/1200))*261.62 = 523.24 Hz (8ve) idem (2^(((1*50/12)*12)/1200))*261.62

24 quarts de ton

voir :

https://sonocreatica.org/proliferation/

https://sonocreatica.org/realite-frequentielle/

https://sonocreatica.org/aide-memoire-de-calcul-audio-frequentiel/


Échelle Wyschnegradsky

(2^(((1200/72)*1)/1200))*261,62 = 264.150789763 Hz (1/12) de 1200

(2^(((1200/72)*72)/1200))*261,62 = 523.24 (8ve)

(2^(((1300/72)*1)/1200))*261,62 = 264.362790735 Hz (1/12) de 1300 (8ve modifiée)


Formulations hybrides

Log(261.62) = 2.41767094133 (log de la fréquence 261.62) ≡ Constate endogène (Ke)

(2,41767094133^(((1200/12)*1)/1200))*261,62 = 281,592256001363 Hz [C#(4) + 27]

(2,41767094133^(((1200/12)*12)/1200))*261,62 = 632,511071670755 Hz X(ave) [D#5 + 28]

………………


Déploiement logarithmique

(log261.62^(((1200/12)*0)/1200))*261.62 = 0 [C4] + 0 Hz

(log261,62^(((1200/12)*1)/1200))*261,62 = 52.7092559725 Hz [G#(1 ) + 26]

(log261,62^(((1200/12)*2)/1200))*261,63 = 105.418511945 Hz [G#(2) + 26]

(log261,62^(((1200/12)*3)/1200))*261,62 = 158.127767917 Hz [D#(3) + 28]

(log261,62^(((1200/12)*4)/1200))*261,62 = 210.83702389 Hz [G#(3) + 26]

(log261,62^(((1200/12)*5)/1200))*261,62 = 263.546279862 Hz [C(4) + 13]

 (log261,62^(((1200/12)*6)/1200))*261,62  = 316.255535835 Hz [D#(4) + 28]

(log261,62^(((1200/12)*7)/1200))*261,62 = 368.964791807 Hz [F(4) + 95]

(log261,62^(((1200/12)*8)/1200))*261,62 = 421.67404778 Hz [G#(4) + 26]

(log261,62^(((1200/12)*9)/1200))*261,62 = 474.383303752 Hz [Bb(4 )+ 30]

(log261,62^(((1200/12)*10)/1200))*261,62 = 527.092559725 Hz [C(5) +13]

(log261,62^(((1200/12)*11)/1200))*261,62 = 579.801815697 Hz [C#(5) + 78]

(log261.62^(((1200/12)*12)/1200))*261.62 = 632.511071669 Hz [D#(5) + 28]


3.666^(((1200/12)*12)/1200))*261,62 = 959.09892 Hz X(ave) métatonale

Log(3.666)^(((1200/12)*12)/1200))*261.62 = 147.604031549 Hz déploiement ou cents (Km) métatonale

1.618^(((1200/12)*12)/1200))*261.62 = 423.30116 Hz (suite contractée + frontière flottante)

Log(1.618)^(((1200/12)*12)/1200))*261.62 = 54.6729596898 Hz déploiement ou cents (Kf) fibonacci

Log(1618)^(((1200/12)*12)/1200))*261.62 = 839.53295969 Hz [une X(ave) Fibonacci]

1492/1000 = 1.492 soit 1.492^(((1200/12)*12)/1200))*261.62 = 390.33704

Log(1.492)^(((1200/12)*12)/1200))*261.62 = 45.461399509 Hz déploiement ou cents (Kt) Tzac

Log(1492)^(((1200/12)*12)/1200))*261.62 = 830.321399509 X(ave)

Compléments


Espaces juxtaposés 

Substrat261,62 [C4 + 0] soit 261.62 * (1.08333333333 ^ 0)

Ea / Ep

1300/1200 = 1.08333333333 | 261.62 * (1.08333333333 ^ 1) = 283.421666666 [C#4 + 39]

261.62 * (1.08333333333 ^ 2) = 307.040138887 [D4 + 77]

261.62 * (1.08333333333 ^ 3) = 332.626817127 [E4 +18]

261.62 * (1.08333333333 ^ 4) = 360.345718553 [F4 +54]

261.62 * (1.08333333333 ^ 5) = 390.374528431 [F#4 + 93]

261.62 * (1.08333333333 ^ 6) = 422.905739132 [G#4 + 31]

261.62 * (1.08333333333 ^ 7) = 458.147884058 [A4 +70]

261.62 * (1.08333333333 ^ 8) = 496.326874395 [B4 + 9]

261.62 * (1.08333333333 ^ 9) = 537.68744726 [C5 +47]

261.62 * (1.08333333333 ^ 10) = 582.49473453 [C#5 + 86]

261.62 * (1.08333333333 ^ 11) = 631.035962405 [D#5 +24}

261.62 * (1.08333333333 ^ 12) = 683.622292603 [E5 +63]

261.62 * (1.08333333333 ^ 13) = 740.590816985 [F#5 + 1]


Prolifération des espaces par la constante K 139


 Autres exercices sur la fréquence Do4


Outils complémentaires en dehors de Google

Sengpielaudio 

 Hyperphysics

Sonopoïèse Musescore

Réalité fréquentielle

2 ^ ((100 * 1) / 1200)) * 261.62                                            2 ^ ((100 * 12) / 1200)) * 261.62   

2 ^ ((66.66 * 1) / 1200)) * 261.62                                         2 ^ ((66.66 * 18) / 1200)) * 261.62

2 ^ ((50 * 1) / 1200)) * 261.62                                              2 ^ ((50 * 24) / 1200)) * 261.62

2 ^ ((40 * 1) / 1200)) * 261.62                                               2 ^ ((40 * 30) / 1200)) * 261.62

2 ^ ((33.33 * 1) / 1200)) * 261.62                                          2 ^ ((33.33 * 36) / 1200)) * 261.62

2 ^ ((28.57 * 1) / 1200)) * 261.62                                          2 ^ ((28.57 * 42) / 1200)) * 261.62

2 ^ ((25 * 1) / 1200)) * 261.62                                               2 ^ ((25*48) / 1200)) * 261.62

2 ^ ((22.22 * 1) / 1200)) * 261.62                                                        2 ^ ((22.22 * 54) / 1200)) * 261.62

2 ^ ((20 * 1) / 1200)) * 261.62                                                2 ^ ((20 * 60) / 1200)) * 261.62 

2 ^ ((18.18 * 1) / 1200)) * 261.62                                           2 ^ ((18.18 * 66) / 1200)) * 261.62

2 ^ ((16.6666666667 * 1) / 1200)) * 261.62                           2 ^ ((16.6666666667 * 72) / 1200)) * 261.62

Musiques jivaro | Une esthétique de l’hétérogène par Pierre Salivas


Introduction & 1ère   partie
 

ANRT

MoreBooks !


Récursivité proliférante

Exemple

D’après un mode sous-jacent de 7 termes / base 1.618 / Constante 33/7 = 119 cents

 Échelle non répétitive

A : antérieur / À : postérieur


 Déploiement du territoire spatial de la constante 833/7= 119

X(ave) non itérative

1.618^ (11*119/833)*261.62                                                           1.618^ (119*119/833)*261.62

Série : 0, 11, 22, 33, 44, etc…

Et ainsi de suite jusqu’à compléter 119

261,61 Hz (C ) 0 / 0 ∆

557.270115811 Hz (C#) 5 / 9 ∆ 9↑

1187.02691681 Hz (D) 6 / 18 ∆ 9↑

2528.45588029 Hz (D#) 7 / 27 ∆ 9↑

5385.79963777 Hz (E) 8 / 36 ∆ 9↑

11472.1549877 Hz (F) 9 / 45 ∆ 9↑

24436.5459009 Hz (F#) 10 / 54 ∆ 9↑

52051.6656379 Hz (G) 11 / 64 ∆ 10

110873.930656 Hz (G#) 12 / 73 ∆ 9↑

236169.743051 Hz (A) 13 / 82 ∆ 9↑

503059.170022 Hz (Bb) 14 / 91 ∆ 9↑

933911.525312 Hz (A) 15 / 62 ∆ 62

Outils en dehors de Google

Sengpielaudio 

 

 Hyperhysics


Extensionnalité prolifique

El logaritmo como base de una frecuencia (Hz) proliferante

Divertimento heurístico cent ⟷ frecuencial

log(2) = 0.30102999566

(0,301/12) = (0.02508333333 * 1000) = 25.08333333 savarts [½ tono]

ver : https://sonocreatica.org/hacia-la-sencillez-compleja-de-una-historia-sumamente-complicada/

log(1,618) = 0.20897851727

1618 × log1.618 (440 / 880) 169.063620476

Reversibilidad : 1618 × log1.618 (880 / 440) 676.254481906

log(1.492) = 3.17376882314

1492 × log1.492 (440 / 880) 129.63154206 alguna cosa de

 Reversibilidad : 1492 × log1.492 (880 / 440) 518.52616824


log(10) 1

1618 × log10 (800 / 440) 487.066532984 equivalente a Bb + 76 ∆ (8va exigua)

2^(12/12)*440 = 880

ó

261.62*log10 (1*12) | 282.335397591

261.62*log10 (12*12) 564.670795182 (8va dilatada)

sengpielaudio

LECTURA


Logaritmo & frecuencia COVID 19

log(19) 1.27875360095

2021 * log19 (440/880) 1292.18051376 (Octava corona virus)

—————————-

19 ^ (2021/2021) * 261.62 4970.78

(equisava mutatum⟷mutatum)

19 ^ (1.618*1/2021) * 261.62  262.237444157 | 19 ^ (1.618*1618/2021) * 261.62 11860.912908


La equis(ava)